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Executive Summary and Objectives 
 
Incomplete or sparse information on types of data such as geologic or formation 
characteristics introduces a high level of risk for oil exploration and development 
projects.  “Expert" systems developed and used in several disciplines and industries have 
demonstrated beneficial results.  A state-of-the-art exploration “expert” tool, relying on a 
computerized database and computer maps generated by neural networks, is being 
developed through the use of “fuzzy” logic, a relatively new mathematical treatment of 
imprecise or non-explicit parameters and values.  Oil prospecting risk can be reduced 
with the use of a properly developed and validated “Fuzzy Expert Exploration (FEE) 
Tool.” 

This FEE Tool can be beneficial in many regions of the U.S. by enabling risk 
reduction in oil and gas prospecting as well as decreased prospecting and development 
costs.  In the 1998–1999 oil industry environment, many smaller exploration companies 
lacked the resources of a pool of expert exploration personnel.  Downsizing, low oil 
prices, and scarcity of exploration funds have also affected larger companies, and will, 
with time, affect the end users of oil industry products in the U.S. as reserves are 
depleted.  The pool of experts is much reduced today.  The FEE Tool will benefit a 
diverse group in the U.S., leading to a more efficient use of scarce funds and lower 
product prices for consumers. 
 This seventh of ten semi-annual reports contains a summary of progress to date, 
problems encountered, plans for the next year, and an assessment of the prospects for 
future progress.  The emphasis during the April 2002 through September 2002 period was 
directed toward development of rules for the fuzzy system. 
 
Introduction 
 

In the first three years of the Fee Tool Project, an immense amount of Delaware 
Basin data composed of regional geology, structure, production, gravity and 
aeromagnetic information, as well as local data such as well logs, has been accumulated.  
This data, organized and cataloged into several online databases, is available for the 
Expert System and users as needed and as appropriate in analyzing production potential.  
A preliminary map of production potential for the basin has been generated and stands 
ready to be modified by rules defined both by human experts in exploring the Delaware 
Basin, and by statistical rules defined by the database.  A number of new and useful tools 
and technologies have been generated to support these efforts, including online useable 
interfaces for neural network analysis (PredictOnline), ranking of potential inputs using 
fuzzy logic (FuzzyOnline), a preliminary Expert System able to make rudimentary 
drilling decisions, and a web interface for accessing the databases and Expert System 
software.  

In the next two years a finished Expert System will be provided that will run 
remotely from a browser on nearly any computer.  The system will be able to aid in 
development and drilling decisions for both the Brushy Canyon and Devonian plays by 
providing readily accessible public information.  An interactive and customizable 
questionnaire plus relevant analyses will produce an "Expert" opinion of a prospect in a 
short time to enhance the work of a human explorationist. 
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Progress and Discussion of Results 
 
Brushy Canyon Review  
 
Geology 

The Brushy Canyon Formation of the Delaware Mountain Group (Permian: 
Guadalupian) consists of 550 to 1650 ft of interbedded fine-grained sandstones, 
siltstones, and minor detrital carbonates deposited in the deep-marine Delaware Basin 
(Fig. BC1). The Brushy Canyon Formation unconformably overlies the Bone Spring 
Formation (Permian: Leonardian) or erosional remnants of the Cutoff Formation 
(Permian: Guadalupian) throughout much of the Delaware Basin (Fig. BC2). The Brushy 
Canyon is overlain by basinal sandstones and siltstones of the Cherry Canyon Formation 
(Permian: Guadalupian). In New Mexico, depth to the Brushy Canyon ranges from 1950 
ft near the northern and western margins of the basin to 8600 ft in the deepest part of the 
basin in southwest Lea County. 

The Brushy Canyon became a major exploration and development target in the 
middle to late 1980s. It had been drilled through and ignored for decades as producers 
concentrated on deeper targets, mainly gas-productive intervals in the Morrow and 
Atokan (Lower Pennsylvanian) and also on shallower oil-productive sandstones of the 
Bell Canyon Formation of the Delaware Mountain Group (Permian: Guadalupian). The 
Brushy Canyon sandstones were not considered a viable exploration target for four 
reasons (Montgomery et al., 1999). First, they are low-resistivity sandstones for which 
conventional log analysis indicates high water saturations. Second, they are less 
permeable than shallower oil-productive sandstones in the Bell Canyon. Third, the 
Brushy Canyon is a deeper target than the Bell Canyon, therefore making it seem not as 
economically viable. Fourth, little or no oil flows from Brushy Canyon sandstones on 
drill-stem tests. Since the mid-1980s, however, the Brushy Canyon has been recognized 
as a major, economically viable target. More than 110 fields currently produce oil and 
associated gas from the Brushy Canyon in southeast New Mexico.  The predominant 
trapping mechanism is stratigraphic (Montgomery et al., 1999). 

The Brushy Canyon has been subdivided into three informal stratigraphic units by 
most workers, an upper unit, a middle unit, and a lower unit (Fig. BC2; Montgomery et 
al., 1999). Boundaries between the units are not well defined and generally vary from 
worker to worker. The upper Brushy Canyon produces significant volumes of oil and the 
middle Brushy Canyon produces relatively little oil. The lower unit has produced most of 
the oil obtained from the Brushy Canyon. This part of the project concentrated on the 
lower Brushy Canyon.  

Brushy Canyon fields have typically been discovered by reexamining and 
reentering old wells that have produced from deeper stratigraphic units such as the 
Morrow (Lower Pennsylvanian) and have been abandoned as the deeper production has 
declined to subeconomic levels. Recompletions are typically made in those wells that 
exhibited good mudlog shows in the Brushy Canyon but were never tested or were tested 
with water recovery on a drill-stem test. A few operators have drilled new wells updip of 
older wells that have exhibited shows in the Brushy Canyon. Generally, however, most 
discoveries have been made by reentering old wells. Most exploration, therefore, has 
been concentrated on wells that have been drilled to Lower Pennsylvanian targets. While 



                                                                                                                                         3

this has proved to be a successful and economically viable strategy for many operators, it 
has limited exploration largely to areas where recently abandoned deep wells are 
available for reentry. Because many of the wells were originally drilled on structures that 
affect the Lower Pennsylvanian, most Brushy Canyon exploration has therefore been 
essentially structural in aspect and has largely ignored the stratigraphic component of 
trapping, which is dominant. 

This portion of the project involved the acquisition, synthesis, and analysis of 
structural, stratigraphic, production, reservoir, and source-rock data. The data are 
collected from more than 720 wells basinwide (Fig. BC3). Wherever possible, data were 
collected so that data from productive wells in Brushy Canyon pools were offset by 
nonproductive wells adjacent to those pools. In this way, geologic contrasts between 
productive areas and immediately adjacent nonproductive areas are reflected in the 
dataset and its derivative maps. Data synthesis and analysis performed as this part of the 
project have been used to help devise and structure the neural network system.  

The structure on top of the Bone Spring Formation (Fig. BC4) and lower Brushy 
Canyon Formation (Fig. BC5) indicate more than 7500 ft of structural relief between the 
shallower parts of the basin to the north and the deepest part of the basin to the southeast. 
The structure on the top of the Brushy Canyon Formation (Fig. BC 5) is very similar with 
a relief of only 7200 ft, indicating a partial infilling of the basin during Brushy Canyon 
time. The structure on the top of the Bone Spring Formation includes numerous local 
closures and structural noses that are superimposed on the regional descent of the Bone 
Spring into the Delaware Basin. Also present are several structural lows that extend into 
the basin from adjacent areas on the Northwest shelf. As discussed below, many of these 
local structures controlled sand distribution in the lower Brushy Canyon and are therefore 
paleobathymetric elements that were in existence at the time of Brushy Canyon 
deposition. Many, but certainly not all, appear to be located over Pennsylvanian 
structures described by Montgomery et al. (1999). Pennsylvanian- and Permian-age 
structure has been overprinted by a southeast regional tilt of Laramide (Late Cretaceous - 
Early Tertiary) age (Hills, 1963; Dickerson, 1985). 

The lower part of the Brushy Canyon Formation is 60 to 500 ft thick within the 
project area in southeast New Mexico (Fig. BC6). It consists of arkosic to subarkosic, 
fine-grained sandstones (reservoir facies), organic-rich siltstones (seal and source-rock 
facies), dolostones and limestones that are present mostly near the shelf margin, and 
black to dark-gray calcareous shales or marlstones (Montgomery et al., 1999). 

Brushy Canyon sandstones are allochthonous sediments that originated on 
surrounding shelf areas and were transported into the deep-marine Delaware Basin prior 
to deposition. The mechanism of transport is enigmatic and has been ascribed more 
recently to various gravity-related flow processes including saline density currents 
(Harms, 1974; Harms and Williamson, 1988; Harms and Brady, 1996) and turbidity  
currents (Hull, 1957; Jacka et al., 1968). Whatever the mechanism of transport, the 
conveying currents apparently flowed downslope and deposited the sands in submarine 
channels and on submarine fan and channel complexes (e.g. May, 1996; Thomerson and 
Catalano, 1996; Basham, 1996; Broadhead et al., 1998). Most depositional models 
hypothesize that Brushy Canyon sands were initially transported across the Northwest 
shelf during lowstands of sea level when the shelf was exposed. The sands were then 
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remobilized and transported into the basin through submarine canyons incised into the 
shelf-edge carbonates.  

Thicker areas of the lower Brushy Canyon were deposited in structurally low 
depressions in the underlying Bone Spring Formation. Many of these depressions 
originate at the shelf edge and are elongate perpendicular to the shelf edge. This 
relationship between lower Brushy Canyon thickness patterns and underlying Bone 
Spring morphology indicates that the structural depressions were depressions that acted 
as conduits for the transport of Brushy Canyon sands into the deep basin and as ponding 
areas where submarine fans were formed. 

Similar patterns of thickness distribution can be seen on isolith maps of reservoir 
quality sandstone within the lower Brushy Canyon. One map, derived from density 
porosity logs, show the net thickness of sandstone with at least 15% porosity (Fig. BC7). 
A map that shows thickness of sandstone with at least 10% porosity has similar patterns 
(Fig. BC8). Both of these maps indicate the distribution of reservoir quality sandstones 
that are capable of sustained, economic levels of oil production, although the sandstones 
with a minimum of 10% porosity may be marginally productive. Reservoir quality 
sandstones in the Brushy Canyon that are oil productive typically have porosity in the 12 
to 22% range (see Asquith et al., 1996; Gawloski, 1995; Hoose and Dillman, 1995; 
LeMar, 1995; May, 1996; Mitchell, 1995; Tittl, 1995; White, 1995; Worrall, 1995). It is 
possible that some sandstones with more than 15% porosity will not be productive 
because of the dominance of micropores that that inhibit the migration and production of 
oil (see Asquith et al., 1996). 

Thicker areas of reservoir quality sandstones are located along the northern and 
western margins of the basin and are distributed along linear to lobate trends that extend 
from the basin margin into the deeper parts of the basin. Primary sources of reservoir 
quality sand were mostly located to the northwest and the west. The eastern part of the 
Northwest shelf contributed lesser, but still significant, volumes of sand. Only minor 
amounts of reservoir quality sand were derived from the Central basin platform to the 
east. An overlay of the 15% porosity isolith map on the Bone Spring structure map 
indicates that the reservoir sandstones are confined mostly to the structural depressions in 
the underlying Bone Spring or are present as lobe-shaped deposits (submarine fans) 
downslope of where the depressions terminate (Fig. BC9). Deflection of transporting 
currents around structural closures and noses in the basin is evident in the map patterns. 

Depositional sandstone units are separated by 5 ft to 20 ft thick layers of organic-
rich siltstones. These siltstones are represented on logs as radioactive beds. Most exhibit 
much greater lateral continuity than the interbedded sandstones. Several of the siltstone 
beds can be correlated throughout the basin. They are thought to represent periods of 
basin starvation (Garber et al., 1989; Gardner, 1997). The siltstones are use to internally 
subdivide the Brushy Canyon into its upper, middle, and lower units. 

When areas of established, discovered oil production from the lower Brushy 
Canyon are compared with the structural configuration of the lower Brushy Canyon (Fig. 
BC5), it is evident that oil accumulations are not coincident with the larger scale 
structural closures and noses. Productive areas are mostly coincident with structurally 
low areas in the Brushy Canyon. These low areas are inherited from paleobathymetric 
and paleostructural lows that characterize the upper surface of the underlying Bone 
Spring Formation. Areas of lower Brushy Canyon production are coincident with 
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reservoir fairways where net thickness of lower Brushy Canyon sandstones with at least 
15% porosity is 15 ft or more (Fig. BC7). The map of net thickness of sandstones with 
porosity greater than 10% exhibits a somewhat less explicit correlation with production 
(Fig. BC8). Therefore, the fuzzy logic system probably should not emphasize structure in 
the conventional manner. Instead of focusing target areas on structural closures and 
noses, the fuzzy logic system will focus on paleostructural lows that acted as conduits for 
sediment transport. Structural closures may be significant where they are located 
downslope and affect pond sediment flows, causing accumulation of thick reservoir 
quality sands, or where the structural configuration postdates sediment deposition and 
therefore had no affect on sediment transport routes. 

A major question is raised by the maps that overlay productive areas on the 
reservoir sandstone trends. Why is production largely absent from areas in the 
westernmost and northwestern most parts of the research area where reservoir sandstones 
occur in abundance? These areas typically have more than 100 ft of lower Brushy 
Canyon sandstone with at least 15% porosity, yet these areas lack production. Although 
this may be partially due to incomplete testing and evaluation, it is likely that geological 
factors also play a role and that some parts of these sandstone-rich areas are truly barren 
of commercial hydrocarbons. Can this be explained by a paucity of seals? It may be that 
oil and gas have migrated updip out of the basin and have not been trapped in the Brushy 
Canyon for lack of adequate barriers to migration. Figure BC7 shows that the larger oil 
accumulations within the Brushy Canyon coincide with areas of thick reservoir 
sandstones that thin or pinchout in an updip (northerly, northwesterly, or westerly) 
direction. The thin sands in the northernmost and westernmost parts of the basin appear 
to be continuously connected with the outcrop and therefore have not provided updip 
seals, at least along major sand trends. 
 Alternatively, eastward tilting during the Laramide may have led to flushing of 
the Brushy Canyon in this region by influent groundwaters (Lindsay, 2001). Influent 
waters may have moved downdip in an easterly direction until they encountered seals that 
also acted to trap hydrocarbons in stratigraphic traps to the east. Maps that show salinity 
of produced lower Brushy Canyon waters (Fig. BC10, BC11) were constructed for this 
project and indicates that salinity decreases toward the northern and western margins of 
the basin indicating recharge of fresh water along the lower Brushy Canyon outcrop, and 
therefore supporting Lindsay’s hypothesis.  

Another possibility that may explain the sparse distribution of hydrocarbons in 
these areas is an absence or paucity of source rocks. It has been reasonably well 
established that, at least in places, oil accumulations within the Brushy Canyon are 
sourced by organic-rich siltstones within the Brushy Canyon (Hays and Tieh, 1992; 
Robinson, 1993). The sandstone reservoirs are interbedded with their source rocks and 
the source strata also act as seals for the accumulations. Robinson (1993) concluded that 
the low permeabilities of Brushy Canyon reservoirs are indicative of short migration 
distances. If this is the case, then oil accumulations should be preferentially concentrated 
in areas where source rocks are mature, thick, and have relatively high contents of 
organic carbon. Data and maps relating to these hypotheses were collected and created as 
part of this project in order to provide the fuzzy expert tool information with which to 
evaluate the importance of source rocks. A map of total organic carbon (TOC) content of 
lower Brushy canyon source rocks (Fig. BC12) indicates that sufficient organic material 
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is present within the lower Brushy Canyon to form adequate source facies throughout the 
Delaware Basin. Thermal maturity of Brushy Canyon source rocks, although adequate for 
oil generation throughout the research area, increases to the south in the deeper parts of 
the basin and also to the west with increasing proximity to the Rio Grande rift (Figure 
BC13). Oil gravity data collected and mapped for this project indicate a bimodal 
distribution of lower Brushy Canyon oils (Fig. BC14). Oils with higher API gravities 
(API > 40 degrees), which are lighter and presumably more thermally mature, have been 
trapped along major sandstone fairways whereas somewhat heavier oils (API < 40 
degrees) are present where sand bodies do not occur along major sandstone fairways. 
This distribution of oils suggests that lighter, more mature Brushy Canyon oils may have 
been generated in deeper, more mature parts of the Delaware basin and migrated updip 
along sandstone fairways until they were trapped. The somewhat heavier oils had their 
origin in source beds close to the reservoirs in the shallower parts of the basin; the limited 
extent of sandstone bodies in these areas caused local hydrocarbon entrapment and 
prevented the oil from migrating longer distances. Thus, proximity to sandstone fairways 
plays a significant role in oil gravity and quality within the lower Brushy Canyon. 
 
Computational Intelligence 
 
Overtraining Problem 
 

The pitfalls of neural network “overtraining” were discussed in the Third Annual 
report1 when the problem was encountered with the Poker Lake 89 dataset. The density 
and neutron porosity logs along with the deep and shallow resistivity logs were used as 
input to train a 4-2-1 neural network with the limited domain dataset (19 available BVO 
measurements). The training was almost perfect, as shown in Fig. OT1. The Poker Lake 
89 neural network was used to predict the Nash Draw 23 BVO log shown in Fig. OT2. 
Notice that the predicted high BVO values are in areas where the core values (truth) are 
low. Experience to date suggests that the ratio of samples to neural network weights 
(node tie lines) should exceed 2 to minimize this over-training problem. The ratio is 1.9:1 
in the Poker Lake 89 example. During this reporting period, synthetic datasets were used 
to investigate the empirical 2:1 rule. 
 
Overtraining investigated with synthetic datasets 

Correctly training neural networks is a notoriously difficult problem. In training 
neural networks, one of the major pitfalls is overtraining. Overtraining occurs when a 
network has learned not only the basic mapping associated with input and output data, 
but also the subtle nuances and even the errors specific to the training set. If too much 
training occurs, the network may only memorize the training set and lose its ability to 
generalize new data which results in a network that performs well on the training set, but 
poorly on out-of-sample test data and produces poor predictions. To assure accurate 
predictions overtraining should be avoided. 

Experience applying neural networks to correlate logs with core measured BVO 
suggests that the records/weights (or core measurements/NN tie lines) must be larger than 
two to minimize overtraining. The following numerical studies use 2D and 3D synthetic 
datasets to confirm this rule of thumb. 
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Methodology Outline 
 
2-D problem 

Generate synthetic datasets using x2-1, sin(x), and three different Fourier 
equations, named Fourier No. 1, No. 2, and No. 3 respectively.  Random(x), which 
generates random numbers in a given range, is taken as the noise (error) of the output of 
these functions. By suitable control and normalization of the input and output, we make 
the output values of these functions in the range from –1 to 1 and those of random(x) 
range from -0.1 to 0.1, thus with a relative error 0.1 for the output. Here relative error 
means the range of random(x) divided by the range of the functions’ output. The number 
of total records is 600, 300, 150, 100, 75, 60, 40, 30, 20, and 15 respectively. Eighty 
percent of the total records were taken randomly as training data, the remaining 20% as 
the testing set for the network. These records were used to model ANNs with a constant 
1-3-4-1 architecture, in other words, one input layer with one node, two hidden layers 
with three and four nodes respectively and one node in output layer.  

These functions are shown in Eq.(1) to Eq.(5) and the training data are shown in 
Figure OT3, OT5, OT7, OT9, and OT11. 
 
Polynomial Function: 

)1......(..................................................12 −= xy  
Where x ranges from 0 to 1.414 
 
Trigonometric Function: 

)2.......(........................................).........sin(xy =  
Where x ranges from 0 to 6.28. 
 
Fourier No.1 function: 
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Fourier No.3 function: 
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The neural network (Predict Online) used to train and test the synthetic data, generates a 
r2 value that is used to analyze the training/testing cycles. The r2 is defined as: 

nyY ii
/∑=

−
 

 
r2 indicates the performance of ANNs.  
 

Table OT1 shows the 1-3-4-1 ANN results for x2-1 function with different r/w, 
when r/w=1.68, the network performs well for both training and testing, but when 
r/w=1.26, the rtrain

2=1, rtest
2 rapidly decreases to only about 0.72. The ANN is overtrained. 

All the results are shown in Figs. OT4, OT6, OT8, OT10, and OT12.  
 

 
Table OT1  

 x2-1 Function Results with Different r/w Ratio 
Train test sum No. of train 

records r/w* Cycles rtrain
2 rtest

2 rtrain
2+ rtest

2 
480 25.26 600 0.99175 0.99017 1.98192 
240 12.63 800 0.98957 0.98989 1.97946 
120 6.32 1000 0.99167 0.98303 1.9747 
80 4.21 1400 0.99692 0.98123 1.97815 
60 3.16 800 0.99335 0.98926 1.98261 
48 2.53 1000 0.99666 0.9707 1.96736 
32 1.68 800 1.00000 0.98143 1.98143 
24 1.26 600 1.00000 0.71851 1.71851 
16 0.84 800 1.00000 0.45852 1.45852 
12 0.63 400 1.00000 -0.00016 0.99984 

 
Remarks: *  r/w is the number of records divided by the number of weights 
 
3-D  problem 

The previous methodology was applied to a 2-3-4-1 architecture ANN to study 
3D functions. In other words, Predict Online (ANN) with one input layer with two nodes, 
two hidden layers with three and four nodes respectively and one node in output layer 
was used to analyze function z=sin(x)+cos(y)+random(x) and function 
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z=sin(x)*cos(y)+random(x). The inputs are  x and y and z is the output. The training data 
are shown in Figure OT13 and OT15. Table OT2 shows the 2-3-4-1 ANN results for 
sin(x)+cos(x) function with different r/w. When r/w=1.45, the network performs well for 
both training and testing, but when r/w=0.73, the rtrain

2=0.999, rtest
2 decreases to 0.90 and 

the ANN is overtrained. All the results are shown in Figure OT14 and OT16.  
 

Table OT2 
Sin(x)+cos(y) Function Results with Different r/w Ratios 

Train Test Sum 
No. Of Training 

Records r/w* Cycles rtrain
2 rtest

2 rtrain
2+ rtest

2 
961 34.94 1600 0.99384 0.99228 1.98612 
320 11.64 1400 0.99429 0.99758 1.99187 
160 5.82 600 0.98726 0.98399 1.97125 
80 2.91 1200 0.99539 0.99802 1.99341 
40 1.45 1200 0.99852 0.99237 1.99089 
20 0.73 1200 0.99935 0.90423 1.90358 
10 0.36 800 0.99989 0.00000 0.99989 

Remarks: *  r/w is the number of records divided by the number of weights 
 
Conclusion 

Using PredictOnline, more than ten different functions were evaluated to find the 
minimum r/w. The numerical experiments with well-defined synthetic datasets 
demonstrate that to minimize overtraining of 1-3-4-1 neural network, r/w should exceed 
2.0 for all tested functions. The implication is that 2.0 is the lower r/w limit to minimize 
overtraining for these 2D problems.  The limited 3D dataset suggests that r/w >1.0 maybe 
necessary to minimize overtraining for the 3D synthetic dataset. 

 
Nash Draw Bulk Volume Oil Predictions 

 
This procedure is built on the idea that the inclusion of core oil saturation values 

in log analyses improves the interpretation. It also assumes that statistical parameters can 
be correlated to production. This poses an inverse problem of correlating between the 
various logs, the core measured bulk oil and production. The problem can be solved by 
developing multivariate equations such as those resulting from neural networks.  

The correlations were achieved using two sequential networks. The first network 
was used to correlate the log data with the bulk volume oil and the second to correlate 
statistical data based on the estimated bulk volume oil with the average monthly 
production for the first year of production. A destructive design methodology was used to 
obtain the optimum network architectures. The ratio of the input records to the number of 
network tie lines was kept above 2:1 to avoid overtraining of the networks. 

The two porosity logs and density logs served as inputs to the first network. The 
reason being a typical suite of logs include the porosity and density logs plus the shallow 
and deep resistivity logs. The neutron log is affected by the presence of hydrocarbon; the 
density log gives a good estimate of the porosity while the shallow and deep resistivity 
logs provide information on saturations within the formation. A total of 214 output data 
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(obtained from cores), averaged over 2-ft intervals, was used to train and test the neural 
network. Correlations were developed between the four log inputs and the core measured 
bulk volume oil defined as: 

(BVO)core = φ x So 
This neural network was highly complex. It had an input layer consisting of 4 

nodes, an output layer consisting of a single node and four hidden layers with 6, 4, 5, 2 
nodes respectively. This network trained to a correlation coefficient of 85% with 100% of 
the available data. The finished network was subjected to a validation testing process 
with 80% of the available data (Weiss et al., 2001) 

The second network was trained and tested using the sum, average and standard 
deviation of the bulk volume oil from 34 wells. This network was less complex 
consisting of an input layer with three nodes, an output layer with one node and one 
hidden layer with four nodes and trained to 86%. The architectures are shown in Fig. 
BVO-1 and Fig. BVO-2. The training results of the two networks are shown graphically 
in Fig. BVO-3 and Fig. BVO-4. 

The correlations developed were applied to 16 Brushy Canyon wells in the Nash 
Draw field to estimate the bulk volume oil. The main goal of this process was to validate 
the efficiency of the trained network to make predictions on other wells. These wells also 
had sidewall core information that was used to judge the accuracy of the predictions. 
Some of the results are shown in Fig. BVO-5 and Fig. BVO-6.  The goodness of the BVO 
log prediction in Fig. BVO-6 is especially gratifying since the well is located 30-miles 
from the training dataset. 

Having validated the network, it was used to estimate the bulk volume oil in 34 
Brushy Canyon wells. The statistical properties average, sum and standard deviation of 
the BVO-log from the 34 wells were used to train the second network. The accuracy of 
the trained 3-4-1 network  (Weiss et al., 2001) can be judged with Fig. BVO-7. 

Summarizing, these correlations were achieved using two sequential neural 
networks. The first network was trained and tested using four inputs, the density and 
neutron porosity along with the shallow and deep resistivity logs, to correlate with the 
bulk volume oil (Φ*So) obtained from core analyses. The resulting network was used to 
estimate BVO for 34 Brushy Canyon wells that were not a part of the training data set. 
The second network was trained and tested using statistical data; sum, average and 
standard deviation of the estimated bulk volume oil, to correlate with the average 
monthly production for the first year the well produced. A cross plot of the estimated 
production versus the actual production of these wells was then used to evaluate the 
commercial viability of new wells or reentry completions in the Brushy Canyon. 
 
Regional Predicted Production Potential Map 
 

In last year’s work we accomplished a neural network regression for predicted 
production potential using regional data. The average of barrels of oil per month (BOPM) 
in the first year was calculated for each 40-ac bin in the New Mexico portion of the 
Delaware basin, Brushy Canyon formation. These data were used to generate a map (Fig. 
RL-1) to highlight potential areas of exploration.  This was a major step in the project, 
however. Neural network analysis necessarily results in a non-crisp solution; examination 
of the cross-plots in Figs. CI-1 and CI-2 demonstrate that there are potential sources of 
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error in the maps, though in general the high cross-correlation means the overall fit is 
good.  Therefore it would be inappropriate to expect that any given drilling locations 
would produce exactly as mapped, as there are simply too many variables and the 
algorithm is designed to form generalized solutions, as seen in Fig. CI-3.  Our goal is to 
use this potential oil rate map as the basis for the expert system that will then quantify the 
risk associated with each prospect by answering questions often posed by human experts 
exploring in the Brushy Canyon, as well as questions posed by statistical analyses of the 
data itself.   The map and associated database also provide a rich source of valuable 
heuristic rules for the expert system.  A complete summary of the development of this 
map may be found in the last semiannual report. 
 
Integration of Regional Map with Local Data 
 

The regional Predicted Potential Map seen in Fig. RL-1 was generated with a 
neural network trained with derivatives of the regional gravity, thickness, and structure 
maps as input to a 4-10-10-10-1 neural network, with the initial producing rate of 520 
wells as output.  The ratio of sample to weights is about 2.1:1.  The network trained to a 
90% correlation coefficient and tested to 81%.  A consortium member operates nine wells 
in the NE Lea field that produce from an interval about 2500 ft above the Lower Brushy 
Canyon zone.  The production from the upper zone is declining, thus the need to estimate 
potential production from the LBC zone. The density and neutron porosity logs and the 
shallow and deep resistivity logs through the LBC zone are available. 
 The potential for behind-pipe LBC zone production was first evaluated with the 
Predicted Potential Map.  An area zoom of the NE Lea field and the wells of interest is 
shown in Fig. RL-2.  The regional map predicts potential initial production varying from 
500–5500 barrels of oil per month. 

The density and neutron porosity logs and the shallow and deep resistivity logs 
through the LBC zone provide a local dataset to evaluate and compare to the regional 
map predictions.  The Nash Draw 23 bulk volume oil neural network (Weiss et al., 2001) 
was used to generate pseudo BVO logs through the LBC zone in the NE Lea wells.  The 
statistics of the resulting BVO logs were used as input to the 34-well initial production 
neural network to predict oil production.  The initial production predictions based on the 
Regional Map are compared to the log based predictions in Table RL-I. 

 
Table RL-I. First Year Initial Oil Producing Rate, bbl/mo 

Well Regional Map Predictions Log Predictions 
Mark Federal #1 3000 4486 
Union Federal #1 2500 4017 
Laurie D. Federal #1 500 3463 
North Lea Federal #1-Y 3000 1693 
North Lea Federal #2 4000 1507 
North Lea Federal #3 5500 1242 
Unocal Federal 8 #1 5500 1209 
Union A Federal#2 3500 193 
Union Federal A #1 3500 0 
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 The predictions are considered to be in reasonable agreement, except for the two 
Union Federal wells. 
 
Expert System Rules and Development  
 
Basic design changes. The original design entailed the use of a single massive expert 
system to make decisions about a prospect's potential as a well site, Fig. CI-4.  As we 
have investigated the process of designing and running expert systems, it has become 
apparent that a multitiered system, with components running in parallel, would be both 
more efficient and more versatile in actual usage. Figure CI-5 shows the current design 
structure for implementing and accessing the various expert systems needed to evaluate 
production potential.  The new design is more efficient for several reasons. First, it will 
be faster to code the rules and the resulting code will run faster.  Second, parallel expert 
systems will allow the user to consider only the data types they feel are most influential, 
and ease customization to their personal philosophies.  Third, database entry, IO, from 
the system, will occur in numerous small packets instead of large chunks and extraneous 
data transfers will be reduced. 
 
Implementation.  Figure CI-5 shows the basic layout of the FEE Tool project.  Tier 1 is a 
user interface that allows selection of an area or prospect of interest.  Users can select the 
types of data they are interested in, and can review that data online with their browsers. 
Tier 2 in Fig. CI-5 represents the access of the user’s browser with our online database.  
Advanced users can manipulate the transferred data for personal use.  This data will 
reside on the user’s computer and will not be generally available or affect the permanent 
database in any way.  This allows the use of proprietary information with the system.  
Once the data is accepted or modified, the next step is to run the appropriate expert 
systems using the available data to answer heuristic questions and accepting user input to 
answer other questions that “experts” tend to ask when evaluating Brushy Canyon 
prospects.  In Tier 3, there are five expert systems that can be applied based on user 
wishes. These address Regional Indications, Trap Assessment, Formation Assessment, 
Improved Recovery, and Oil Price.  Specifics and starting rules for these five systems are 
discussed below.  Some users may elect to not factor in certain aspects, or to hardwire 
their own values for future oil price. 
 
Types of rules. Two main types of rules are implemented.  Heuristic rules are derived 
directly from our analysis of regional and local data.  These rules are interpreted from the 
data using algorithms, such as distance relationships, and are based on publicly available 
data.  Heuristic rules include elements like proximity of mature source rocks, structural 
pinchouts, nearest producing well, and formation thickness. We have made progress on 
developing these rules (Table 1) as they apply to the basic Expert System given.   
 
Expert rules come from interviews with Delaware explorationists and mimic questions 
they ask when evaluating prospects. Expert rules may include information about position 
on structure, porosity or permeability ranges, and production at analogous sites. In 
addition, heuristic rules can be replaced if the user has more detailed knowledge than is 
publicly available.  Both types of rules may be fuzzy, as appropriate.  Generally, for sites 
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with less information heuristic rules will be more important and will provide a first 
estimate of production potential.  For sites with sufficient specific or proprietary 
information, expert rules will be dominant.  Two new explorationists have volunteered to 
be interviewed as a result of our recent annual meeting. 
 
Current State of Rules Development 
 
Broken down by subsection, the following paragraphs outline the initial rules already 
coded into the Expert System and the methods for evaluating each prospect based on 
database and user supplied information. 
 
Trap Analysis 
 
Proximity Query 
 
Question:  Is the prospect located within five miles of established production in the 
Brushy Canyon? 
 
Answer supplied by the Database and is the basis for a "first guess"  
This "first guess" is distance weighted using a normalized step function (Fig CI-6) 
Two possible results from this query 
RULE: No, the prospect is not within five miles, resulting in a zero starting estimate 
Passes to Oil Show Query 
RULE: Yes, it is within five miles, resulting in 1.0, 0.8, 0.4, or 0.2 starting estimate 
Passes to Dip Query 
 
Oil Show Query 
 
Is the prospect within two miles of a verified oil show? 
 
Answer is from user input.   
Possible results are yes, or no. 
RULE: Yes results yields a starting guess based on the step function (Fig CI-7) 
RULE: No, results in initial starting guess of 0.05  
Both pass to Dip Query 
 
Dip Query 
 
Question: Is the established production downdip from the prospect? 
Engine searches the database to determine if the prospect is at lower, or higher structural 
elevation, further queries if there is structural highs or lows between the two points (see 
Fig CI-8) 
Three cases are analyzed, updip, downdip, unrelated structure 
RULE: Updip—Prospect is enhanced by taking √(initial closeness value) 
RULE: Downdip—Prospect is reduced by taking (initial closeness value)2 
Passes to Magnitude of Dip Query  
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RULE: Unrelated structure -- prospect is neither upgraded or downgraded 
Passes to Sand Thickness Updip Query 
 
Magnitude of Dip (preliminary) 
 
Question: What is the magnitude of the dip? 
 
Answer supplied by database using simple rise/run relationship (maximum dip) 
Six possible fuzzy rules available 
RULE: High updip, enhance by taking cube root 
RULE: Moderate updip, enhance by taking square root 
RULE: Low updip, no change 
RULE: High downdip, reduce by cubing 
RULE: Moderate downdip, reduce by squaring 
RULE: Low downdip, no change 
All pass to Sand Thickness Query 
 
Sand Thickness Query 
 
Question:  What is the thickness of pay sand (phi > 15%) at the prospect? 
 
Answer supplied by database 
Several answers possible (fuzzy ranges) 
RULE: Thick, >75 ft net porous sand thickness, enhance by taking cube root 
Passes to Updip Pinchout Query 
RULE: Mod. thick, 50 to 75 ft net porous sand, enhance by taking square root 
Passes to Updip Pinchout Query 
RULE: Average, 25 to 50 ft net porous sand, do not enhance 
Passes to Updip Pinchout Query 
RULE: Low, <25 ft net porous sand, reduce prospect by squaring. 
 
Updip Pinchout Query 
 
Question: Within 1 mile updip does the sand thin to 15 ft or less? 
 
Database supplied answer. Along maximum dip azimuth from the prospect. 
Three results possible: 
RULE: Yes, enhance prospect by square root 
RULE: No, thickness increases, decrease prospect by squaring 
RULE: No, no change, prospect unaffected 
All pass to Structural Strike Query 
 
Structural Strike Query 
 
Question: Is the prospect on a structural strike? 
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User-supplied result (pop-up map of structure) 
Two possible results 
Rule: Yes, enhance prospect by square root 
Rule: No, decrease prospect by square 
Ends TRAP ASSESSMENT 
 
Source Analysis 
 
TOC Proximity Query 
 
Question: Are there TOC > 5% rocks present within 5 miles of the prospect? 
 
Two possible results from database search and values assigned based on the chart shown 
in Fig CI-10. 
RULE: Source value set to 0.25, move to END SOURCE ANALYSIS 
RULE: Yes, advance to Dip Query after assigning values from chart. 
 
Dip Query 
 
Question: Is the prospect updip of the heightened TOC? 
 
Engine searches the database to determine if the prospect is at lower, or higher structural 
elevation, further queries if there is structural highs or lows between the two points 
3 cases are analyzed, updip, downdip, unrelated structure 
RULE: Updip— Prospect is enhanced by taking √(initial closeness value) 
Passses to Structural Strike Query 
RULE: Downdip—Prospect is reduced by taking (initial closeness value)2 
Passes to END SOURCE ANALYSIS 
RULE: Unrelated structure -- prospect is neither upgraded or downgraded 
Passes to Structural Strike Query 
 
Structural Strike Query 
 
Question: Is the prospect on a structural strike? 
 
User-supplied result (pop-up map of structure) 
Two possible results 
RULE: Yes, enhance prospect by square root 
RULE: No, prospect is unaffected 
Ends TRAP ASSESSMENT 
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Regional Analysis 
 
Neural Network Map Query 
 
Question: What is the estimated potential production at the location based on the neural  
network-generated production potential map? 
 
Database provided answer, following stepchart Fig C-10: 
RULE: High, production potential at site is assigned a value of 0.8 
RULE: Medium, production potential is assigned a value of 0.5 
RULE: Low, production potential is assigned a value of 0.2 
All pass to Net Pay Thickness Query 
 
Net Pay Thickness Query 
 
Question: What is the estimated net pay thickness (sandstone >15% porosity) at the 
prospect? 
 
Database provided answer, 4 possible results: 
RULE: 0-50ft, prospect is reduced by squaring 
RULE: 50-100ft, prospect is neither enhanced or degraded 
RULE: 100-150ft, prospect enhanced by square root 
RULE: >150ft, prospect enhanced by cube root 
All pass to Structural Query 
 
Structural Query 
 
Question:  Is the prospect on a local structural anomaly? 
 
User-provided, pop-up map shows residual structure (regional structure less regional 
structural trend).  Three possible results: 
RULE: Prospect is near top of local structure, enhance by square root 
Pass To Gravity Query 
RULE: Prospect is on local structure, do not enhance 
Pass To Gravity Query 
RULE: Prospect is not on local structure, degrade by squaring 
 
Gravity Query 
 
Question: Does gravity support the structural query? 
 
User-provided, pop-up map shows regional gravity anomaly and residual maps, two 
possible results 
RULE: Yes, enhance prospect by square root 
RULE: No, do not enhance 
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END REGIONAL ANALYSIS 
 
Scoring of rules. Each of the subexpert systems will assign a numerical score based on 
the answers to individual questions as outlined in the previous section.  These will be 
tuned as the expert system is tested on wells outside the database. As each subprocess in 
figure X results in a numerical value for Risk, an overall evaluation is required, at this 
stage the user’s value for oil price, or our projection is also factored in using a weighted 
sum of the individual risk components: 
 
Risk = [r(R)(W) + r(T)(X) + r(F)(Y) + r(E)(Z)] * r(O) 
Where W + X + Y + Z = 100 %, and where r(O) is a scaling factor based on oil price 
 
Heuristic Rules  
 
One source of rules for the Fuzzy Expert Exploration Tool is the statistical analyses of 
gridded data in our databases.  Currently the regional database has four basic data types 
for the Brushy Canyon: gravity, aeromagnetic, structure, and thickness. An additional 
eight attributes for each of those four basic types has been calculated: DX, DY, DX2, 
DY2, dip azimuth, dip magnitude, curvature azimuth, and curvature magnitude.  
Additional data include location information in latitude/longitude, oilfield X-Y 
coordinate systems, and a numeric grid number that also functions as a database key.  
Additionally, in grids that contain a Brushy Canyon well, there is relevant production 
information for oil, water, and gas.  One factor that complicates working with the 
databases is the fact that the grid is not square: rather, it runs linearly from north to south 
increasing by integer amounts from the top of the study area to the bottom.  The grid then 
steps over to the next “column.”  Each gridpoint is separated by a physical distance of 
1320 ft that corresponds to an area of 40 acres contained by four adjacent (squared) 
gridpoints.  The gridding system looks something like this: 
                                                         08 13 18 
                                                    04 09 14 19 23 
                                               01 05 10 15 20 24 27 
                                               02 06 11 16 21 25 28  
                                               03 07 12 17 22 26 29  
 The primary use of the regional database thus far has been to organize the 
regional data, determine which bins contain production information, and then to calculate 
a “first guess” map of production potential using the data with the highest fuzzy rank to 
predict production.  With this “first guess” map we enter a new phase, where we want to 
evaluate the risk associated with these predictions.  To do this we are using an expert 
system programmed in Jess and designed to ask the same sort of questions a human 
explorationist would, when looking at a prospect.  “Is it high on structure?  Where is it in 
the basin? Are there stratigraphic traps; is it close to other producing wells?” A lot of 
these questions can be answered directly from the database itself, and indeed have been 
built into a separate table that speeds the process of examining a prospect.  This work has 
been completed for the trap assessment phase and a summary of the additional tabulated 
heuristic rules can be found in subsequent paragraphs and are summarized in Table CI-1 



                                                                                                                                         18

The trap assessment portion of the fuzzy expert system is designed to assign a value 
representing potential to each point in a database of locations in the New Mexico 
Delaware basin. The database consists of 60,478 grid points, coordinates in UTM feet 
and Lat-Lon, and geological data measured at each of the points. Other information 
available about the region included a listing of all of the producing wells in the region 
through 1999 and a subset of that list with wells that were known to produce out of the 
Brushy Canyon formation. The end result of the trap assessment phase of the fuzzy 
expert system is a number (fuzzy membership function) calculated from a combination of 
user supplied inputs and data from the database. The values of the output range from zero 
to one, with numbers close to one indicating a spot with a high potential for producing 
oil. 

 
1. Distance to nearest producing well 
The distance to the nearest producing well provides the initial value for the potential 
estimate.  The distance to each well and the minimum were computed using Matlab 
and Excel. For each grid point, this minimum distance was noted, along with the 
location of the closest producing well. A step function was used to assign a value for 
the initial potential estimate. Values of µ = 0.8 to µ = 0.05 were used with a higher 
value representing a grid point within 1320 feet of a producing well, and the lowest 
value representing a grid point over five miles from the nearest producing well. Once 
the initial value was obtained for all 60,478 data points, it is ready to be enhanced or 
reduced based on various Expert Knowledge such as dip direction and magnitude, 
thickness of the producing sand and up-dip sand pinchout.  
 
2. Dip 
For each grid point and its closest neighboring producer, the dip was calculated using 
the values for subsea elevation found in the database of geological data. The values 
computed can be used to modify the starting estimate by either enhancing, reducing 
or leaving the starting estimate unchanged. For instance, if the grid point was up dip 
from the producing well, the prospect is enhanced. The grid points are then flagged 
with a 2, 1, 0, -1 or –2, indicating a strong enhancement, a moderate enhancement, no 
change, a moderate reduction, or a strong reduction. This flag can then be used to 
modify the starting estimate that came from the distance computations in the previous 
section. An example of how this modification is currently done is to take a root to 
enhance a number and using a power to reduce a number. Since the initial estimates 
are between 0 and 1, taking a square root or cube root will result in a larger number 
that remains between 0 and 1, while raising the number to the 2nd or 3rd power will 
result in a smaller estimate that also remains between 0 and 1.  Other possible 
methods of enhancing or reducing the estimate are under consideration, such as 
adding or subtracting a constant. This is an area where expert input is extremely 
valuable, to help judge the significance of concepts like dip in predicting the potential 
of a prospect.  
 
3. Sand Thickness 
Further modification to the estimate is done by looking at the thickness of the Brushy 
Canyon sands at the grid point. This is data that is provided in the database, and four 



                                                                                                                                         19

flags are currently being used here, 2, 1, 0, and –1, with the same meanings as above. 
The cutoff values in feet for the different flags were based on the mean and standard 
deviation of the sand thickness provided in the database. 
 
4. Sand Pinchout 
Software has been developed to look at each point and find the coordinates in UTM-
feet for its eight neighboring points. The dip between the point and all of its neighbors 
was computed, unless the point was located on a boundary of the study area, in which 
case there was no change made to the estimate. Once the eight dips had been 
computed, the neighboring point with maximum dip from the original grid point was 
examined for sand pinchout.  If the thickness at this particular point was found to be 
less than 15 feet, a flag of 1 was added to the database for this point, suggesting that a 
sand pinchout and thus, an enhanced potential was found. If the thickness at this 
particular neighboring point was actually greater than the thickness at the grid point 
in question, the potential was flagged with a –1, suggesting a reduction in potential. If 
neither case was true, the value was left unchanged at this step. As before, the 
suggested method for enhancing or reducing the estimate is to use roots or powers, 
however, other methods may also be applied. 
5. User-Supplied Data 
At various points in this process, the user of the fuzzy expert system can supply data 
of their own, or data obtained by looking at a pop-up map of the region. For instance, 
in developing the starting estimate, the user can consider oil shows as well as the 
known producers that were used to develop the initial values. A step function similar 
to that for distance to producing wells has been developed for distance to oil shows, 
and can be used to find a slightly higher starting estimate when the grid point is more 
than five miles from any producing oil well.  

 
      Table CI-1 
 Data returned Procedure 
Distance Initial value of 

membership 
function µ, 
(0<µ<1) 

Compute distance from each gridpoint to nearest 
producing well, using 2257 known producing wells with 
coordinates in UTM feet using the standard distance 
function. Use minimum distance in a step function to 
return a value from between 0.8 to 0.05, with 0.8 
representing a gridpoint within 1320 feet from a 
producing well.  

Dip Enhancement 
(flag:-2, 
-1,0,1,2) 

Determine which of the wells in the previous computation 
was the closest well to the gridpoint. Use subsea elevation 
at the closest well and the gridpoint to determine the dip. 
If the gridpoint is updip, enhance the value and flag with a 
2 or a 1 depending on the magnitude of the dip. If 
downdip, degrade the value. Methods to enhance or 
degrade the value might involve taking a square root or a 
cube root to enhance, or squaring or cubing the value to 
reduce it. A flag is returned instead of a new value in 
order to explore other possibilities of enhancing/reducing 
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the value.  
Thickness Enhancement 

(flag: -1,0,1,2) 
The thickness is computed using the thickness of the 
Brushy Canyon sand values found in the database. To find 
cutoff values, the mean and standard deviation of the 
thickness were used as a basis with a thickness of over 
200 ft resulting in a flag of 2. Similar methods for 
enhancing or reducing may be used here.  

Sand 
Pinchout 

Enhancement 
(flag: -1,0,1) 

For each gridpoint, the coordinates of its eight 
neighboring points were computed. If a gridpoint had all 
eight neighbors, i.e., it was not on the boundary, then the 
neighbor with maximum updip from the original point 
was found. If the thickness at this point was less than 15 
feet, a sand pinchout is suggested resulting in an enhanced 
potential and a flag of 1. If the thickness at this point is 
greater than the thickness of the original gridpoint, a 
reduction in potential is suggested, resulting in a flag of –
1. If neither case is true, the value remains unchanged.  

 
An example prospect: 

– 3900 feet to nearest producing well (initial value 0.4 from Fig CI-7) 
– Prospect is moderately updip of producer 
– Sands are moderately thick (63 ft) 
– No updip pinchout 
– Is on structural strike 

 
yields the following result: 
 

R(T) = √(√(√(0.4))) = 89%  
 
A decent risk assuming predicted production supports. 
 
A second example prospect: 

– 1300 ft from oil show (initial value of 0.5 from Figure CI-8) 
– Prospect is moderately downdip 
– Sand thickness is low (20 feet) 
– No Updip Pinchout exists 
– On structural strike 

 
yields the following result: 
 

R(T) = √(( (0.5)2)2) = 25%  
 
A poor risk even if predicted production supports the prospect. 
 
Progress on a Graphical user interface for the system is progressing. 
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Devonian Work 
 
Siluro-Devonian Carbonates 
 
 Devonian and Siluro-Devonian carbonates produce from numerous oil and gas 
fields in southeastern New Mexico (Fig. D-1). The 122 Siluro-Devonian fields in 
southeast New Mexico had produced a cumulative 443 MMBO by 1995 (Broadhead and 
Speer, 1995) 10% of the oil produced from southeast New Mexico. Production is from a 
number of zones within the Silurian and Devonian sections (Fig. D-2). A variety of 
mechanisms form traps, most notably anticlines, faulted anticlines, and subunconformity 
pinchouts (Speer, 1993). 
 Geologic data acquisition continued on the Siluro-Devonian carbonates during the 
reporting period. During the previous reporting period, 1600 wells in southeast New 
Mexico that have penetrated the Devonian (Fig. D-3) were identified and entered into a 
database; longitude and latitude have been calculated for these wells. During the present 
reporting period, a regional network of cross sections was constructed in order to 
establish correlation control and to provide quality assurance of data. Logs from a total of 
220 wells were correlated throughout southeast New Mexico. Correlated wells were 
selected from all productive Siluro-Devonian fields and non-productive areas as well, in 
order to provide a dataset that fully contrasts productive areas with non-productive areas. 
In each well, the top of the Siluro-Devonian carbonate section was correlated in addition 
to the top of the Fusselman Formation and the top of the Montoya Formation. Several 
prominent marker beds within the Siluro-Devonian section were correlated as well. 

Similar to our earlier work on the Brushy Canyon Formation, we used our 
correlated data to produce geologic structure maps (Fig. D-4), and isopach (thickness) 
maps (Fig. D-5) of Siluro-Devonian carbonate strata. We will relate these to 
production/nonproduction in both visual and artificial intelligence settings. The goal is to 
use our artificial intelligence system to predict trap configurations in Devonian strata. 
  
Oil Price Forecast 
 
Current Objective 
 
   Earlier work with small datasets suggested that correlations between the future 
price of commodities and oil price might exist.  An investigation is in progress to 
determine if traders in commodities other than oil might actually be excellent forecasters 
of oil price.  About 69 commodities had their 90-day futures prices fuzzy-ranked to 
investigate their relationship of the price of oil to the commodity strike date.  If the future 
commodity price varied regularly with the real oil price on the strike date a correlation 
should be evident.  The dataset broke down into 14 groups, each with a large number of 
commodities; because there was considerable overlap, many commodities ended up in 
more than one group. 

The 90-day commodity future price data begin and end at different dates, but it is 
necessary to place the commodities with the same start and end dates in the same group 
and fuzzy-rank them together. This is unlike the conventional correlation, where one-on-
one tests for correlation were conducted between the future closing price of the 
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commodity in question and that of west Texas intermediate-grade crude oil. As a result, 
all the data underwent conventional correlation, but not all commodities could be fuzzy- 
ranked.  The top fuzzy-ranked commodity in each group was determined. 

The top three 90-day commodities, which were silver (Comex), heating oil 
(Nymex), and silver (1000 Ounce–Cbot) selected from one of the most promising fuzzy-
ranked groups, had their future closing prices used as input to PredictOnline, with the real 
oil price on the strike date as the output.  The training results were poor, indicating no 
strong correlations existed.  The top three commodities from the conventional correlation 
list, taken together, had too little data to develop correlations using PredictOnline.   

It was necessary to select three other commodities with sufficient data to use in 
PredictOnline.  The accuracy of the conventional correlations (x-y plot) of the future 
closing prices of unleaded gasoline (Nymex), GSCI (IOM), and heating oil (Nymex) to 
the price of the west Texas intermediate grade crude oil three months in the future, was 
74%, 72% and 67% respectively, as defined by R2.   These three 90-day commodities 
prices served as neural network input with the price of the west Texas intermediate grade 
crude oil on the strike date as the output.  The network trained to an R2 of 0.91906.  The 
result is interesting (but not overly), because of the obvious relationship of two of the 
commodities namely, gasoline and heating oil, to crude oil.  

The future closing prices of the top conventionally ranked commodities with no 
clear connection to crude oil served as input for the neural network.  The R2 of the Dow 
Jones (E)(CBOT), E-Mini S&P (IOM), and pound/yen (Finex) were 86%, 79% and 73% 
respectively. These were put through the PredictOnline software, which correlated them 
to crude oil with an R2 of 99%. The neural network developed with these three 
commodities is appropriate for blind testing with data not used in the development of the 
3-1-1 network architecture. It is necessary to download additional data from 
www.barchart.com to use for blind testing. Since the commodity datasets are small, blind 
testing will be very important. 
 
Technology Transfer 

 
During this six-month period (April 20021–September 2002) the following six papers 

or presentations were made to disseminate the results of the project: 
1. Weiss, W. W., Balch, R.S., and Stubbs, B.A.: “How Artificial Intelligence Methods 

Can Forecast Oil Production,” paper SPE 75143 presented at the 2002 Symposium on 
Improved Oil Recovery, Tulsa, April 13-17. 

2. Balch, R.S., Hart, D.M. and Weiss, W. W.: “Regional Data Analysis to Better Predict 
Drilling Success: Brushy Canyon Formation, Delaware Basin New Mexico,” paper 
SPE 75145 presented at the 2002 Symposium on Improved Oil Recovery, Tulsa, 
April 13-17. 

3. Balch, R.S., Hart, D.M., Weiss, W.W., Broadhead, R.F.: “Using Artificial 
Intelligence to Predict Drilling Success Using Regional Data, Brushy Canyon 
Formation, Delaware Basin, New Mexico,” Transactions, Southwest Section 
A.A.P.G Convention, Ruidoso, NM June 6-8, 2002. 

4. Subramaniam V., and Weiss, W.W.: “Evaluation of Well Completion Opportunities 
in the Lower Brushy Canyon Using Neural Networks,” Transactions, Southwest 
Section A.A.P.G Convention, Ruidoso, NM June 6-8, 2002. 
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5. Weiss, W.W.: "Reducing the Risk of Installing a Waterflood," Presented at the 
Annual Petroleum Engineering Summer School, Workshop No. 11 Risk Minimization 
and Probabilistic Application in the Petroleum Industry, Dubrovnik, Croatia, 10-14 
June, 2002. 

6. Weiss, W. W., Gottumukkala, V., and Balch, R.S.: “A New Method of Calibrating 
Wireline Logs With Carbonate Core Measurements to Recognize Pay Zones,” Paper 
77330 presented at the SPE Annual Technical Conference, San Antonio, TX Sept 29, 
2002. 

Additionally, five companies have asked specifically for information on areas of 
the Predicted Potential map.  Zooms of these areas were generated for Strata Production 
Company, Bass Enterprise Production Company, Reed and Stevens Inc., Speerex Ltd., 
and Lynx Petroleum Consultants Inc. 
 
Problems Encountered 

 
The acquisition of regional seismic lines continues to be a problem due to the 

value of the data.  Local datasets are available such as those from the DOE-funded Nash 
Draw project.  The processed data from this 3D data set was used to develop new 
methods of interpreting the distribution of thickness, porosity, water saturation and depth 
throughout the survey area.  The methodology can be applied throughout the Delaware 
Basin. 
 Coding of the required web interface algorithms has been an ongoing problem.  
New graduate students in place six months ago at the time of the semi-annual have 
departed.  Currently, REACT group professionals are educating themselves in JAVA and 
are continuing development in what should be a more sustainable fashion. 
 
Next Year’s Tasks 
 
Continue Expert System Development 
 

Currently the Expert System has been programmed to use some basic rules in 
several different categories.  About 100 rules are in the current version; this preliminary 
system can be run on a laptop computer and will be of great assistance in giving human 
explorationists a feel for the system. Work is ongoing in numerically grading questions. 
 
Log Analysis 
 

As Devonian log information becomes available it will be correlated with core 
data to develop pseudo-logs.  Production will then be correlated with the pseudo-log 
statistics. 
 
Geology 
 

Regional maps of source rocks will be constructed. The chief source rock unit is 
the Devonian Woodford shale, which directly overlies the Devonian carbonates (Fig. D-
2). The Silurian Simpson shales are source rocks that underlie the Siluro-Devonian 
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carbonate section. The Woodford is thought to be the chief source unit for lower 
Paleozoic reservoirs in the Permian Basin and the Simpson is a secondary but still 
important source unit.7,8  As with the Brushy Canyon, we will map regional distributions 
of source rock maturity and quality and relate these to oil and gas distribution. With the 
depth of the Woodford varying from less than 7000 ft in the northern part of the basin in 
Chaves County to more than 15,000 ft in the southern part in Lea and Eddy Counties, we 
expect to encounter thermal maturity variations across the oil window/gas window 
boundary that will relate to the distribution of oil reservoirs and gas reservoirs. The map 
of Siluro-Devonian oil and gas fields (Fig. D-1) indicates that most gas fields are located 
in the more deeply buried southern parts of the basin where thermal maturity of source 
rocks should be higher. These relationships will be quantified for use in the artificial 
intelligence system. Thermal maturity variations may also help in the prediction of gas-
oil ratios and therefore relate to aspects of recovery efficiency.  
 
Oil Price Forecast 

 
Additional data from www.barchart.com will be purchased for blind testing. Since 

the commodity datasets are small, blind testing will be an important step in predicting oil 
price from commodity futures. 
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Fig. BC1. Location of project area in relation to Delaware Basin and other geologic elements, 
Permian Basin area southeast New Mexico and west Texas. Geologic elements modified from 
Hills (1984). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. BC2. Stratigraphic chart of Delaware Mountain Group. Compiled from Payne (1976), 
Grauten (1979), Harms and Williamson (1988), and Montgomery et al. (1999). 
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Fig. BC3. Location of well data control points used in the Brushy Canyon part of this project. See 
Fig. BC1 for map location. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. BC4. Three-dimensional view of structure on Bone Spring Formation and location of oil 
pools (in green) productive from the lower part of the Brushy Canyon Formation. 
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Fig. BC5. Three-dimensional view of structure on lower Brushy Canyon Formation and location 
of oil pools (in green) productive from the lower part of the Brushy Canyon Formation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. BC6. Isopach map of lower Brushy Canyon Formation. 
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Fig. BC7. Areas productive from lower Brushy Canyon, net thickness of lower Brushy Canyon 
sandstones with porosity > 15%, and wells that unsuccessfully tested the lower Brushy Canyon. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. BC8. Areas productive from lower Brushy Canyon and net thickness of lower Brushy 
Canyon sandstones with porosity > 10%. 
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Fig. BC9. Net thickness of lower Brushy Canyon sandstones with porosity > 15% superimposed 
on 3-D diagram of Bone Spring structure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. BC10. Salinity of produced Brushy Canyon waters superimposed on 3-D diagram of Bone 
Spring structure. 
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BC11. Salinity of produced lower Brushy Canyon waters and areas productive from lower Brushy 
Canyon. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. BC12. Total organic carbon content, in weight percent, of lower Brushy Canyon source rocks 
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Fig. BC13. Thermal maturity of lower Brushy Canyon source rocks as determined by Rock-eval 
TMAX values and areas productive from lower Brushy Canyon. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. BC14. API gravity of lower Brushy Canyon oils. 
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Fig. OT1. Real overtraining example (Poker 
Lake 89, perfect training).  
 

Fig. OT2.  Real overtraining example 
(Nash Draw 23, bad prediction).  
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Fig. OT3.  Dataset generated by x2-1 function. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. OT4. The 1-3-4-1 ANN results for x2-1 function. 
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Fig. OT5. Dataset generated by sin(x) function. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. OT6. The 1-3-4-1 ANN results for sin(x) function. 
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Fig. OT7.  Dataset generated by Fourier function No. 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. OT8.  The 1-3-4-1 ANN results for Fourier function No.1  
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Fig. OT9. Dataset generated by Fourier Function No.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. OT10. The 1-3-4-1 ANN results for Fourier function No. 2. 
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Fig. OT11.  Dataset generated by Fourier function No. 3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. OT12. The 1-3-4-1 ANN results for Fourier function No. 3.  
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Fig. OT13.  Dataset generated by sin(x)+cos(y) function.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. OT14. The 2-3-4-1 ANN results for sin(x)+cos(x) function.  
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Fig. OT15. Dataset generated by sin(x)*cos(y) function. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. OT16. The 2-3-4-1 ANN results for sin(x)*cos(y) function. 
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Fig. BVO-1. Neural network architecture used to correlate logs with core measured bulk 
volume oil. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. BVO-2.  Architecture used to correlate bulk volume oil with average production.  
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Fig. BVO-3.Training results for network used to correlate logs with core measured bulk volume 
oil. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. BVO-4.  Training results for network used to correlate standard deviation, average and sum 
of bulk volume oil with production. 
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Fig. BVO-5. Network used to 
generate bulk volume oil log. 

Fig. BVO-6.  Blind testing with 
logs from a well 30 miles distant 
to training well. 
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Fig. BVO-7. Accuracy of  34-well training. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. RL-1.  Map of predicted production potential based on the trained and tested neural network 
regression. 
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Fig. RL-2. NE Lea area zoom map. 
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Fig. CI-1. Crossplot of neural network training using the inputs identified via FuzzyOnline. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. CI-2. Crossplot of testing data for the trained neural network of Fig. CI-1. 
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Fig. CI-3.This figure demonstrates the benefits of neural network regressions for complex 
problems where forecasts need to be made.  Assuming only the five points enclosed by diamonds 
are known to start, it is quite easy to fit a polynomial that exactly fits the training data but poorly 
fits the true data distribution.  Neural networks can bypass this problem if a sufficient sample 
exists for training by creating a generalized solution. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. CI-4. The original schematic for the fuzzy expert system shell. 
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Fig. CI-5. More complicated system, which breaks the analysis into several separate categories to 
simplify calculations and customization. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig CI-6. Distance weighted step function for proximity to established production. 
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Fig CI-7.  Distance weighted step function for proximity to oil shows, used when production data 
is not available within 5 miles. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig CI-8.  Illustration of the possible types of dip from one point to another considered by the 
expert system. 
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Fig CI-9.  Distance weighted step function for proximity to source rocks with TOC >5%. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig CI-10. Step chart showing ranges for neural network predicted production potential.  Three 
ranges are defined, High (H), Medium (M), and Low (L). 
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Fig. D-1 Oil and gas fields producing from Siluro-Devonian carbonates reservoirs in southeast 
New Mexico. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure D-2. Stratigraphic column of lower Paleozoic strata in southeast New Mexico. Production 
in the Siluro-Devonian section is obtained from several zones within the Thirtyone, Wristen, and 
Fusselman Formations. Modified from Hill (1986). 
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Fig. D-3. Wells penetrating sub-Woodford Devonian strata in southeast New Mexico. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. D-4. Structure contour map of Siluro-Devonian carbonates. 
 



                                                                                                                                         55

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. D-5. Isopach map of Siluro-Devonian strata in southeastern New Mexico. 
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